Fix for constant time (step 10): ECDSA done

This commit is contained in:
NIIBE Yutaka
2014-01-24 14:49:38 +09:00
parent 78ffb4179e
commit f4e10311c7
2 changed files with 71 additions and 34 deletions

View File

@@ -1,3 +1,8 @@
2014-01-24 Niibe Yutaka <gniibe@fsij.org>
* src/ec_p256.c (get_v_k_i): New.
(compute_kG): Fix for constant time.
2014-01-23 Niibe Yutaka <gniibe@fsij.org>
* src/jpc.c (jpc_add_ac_signed): Fix for constant time.

View File

@@ -1,4 +1,4 @@
/*
/* -*- coding: utf-8 -*-
* ec_p256.c - Elliptic curve over GF(p256)
*
* Copyright (C) 2011, 2013 Free Software Initiative of Japan
@@ -32,6 +32,10 @@
* Cryptographer's Track at RSA
* Pages 250-265, Springer-Verlag London, UK, 2001
* ISBN:3-540-41898-9
*
* [3] Mustapha Hedabou, Pierre Pinel, Lucien Bénéteau,
* A comb method to render ECC resistant against Side Channel Attacks,
* 2004
*/
#include <stdint.h>
@@ -42,22 +46,6 @@
#include "mod.h"
#include "ec_p256.h"
#if TEST
/*
* Generator of Elliptic curve over GF(p256)
*/
const bn256 Gx[1] = {
{{ 0xd898c296, 0xf4a13945, 0x2deb33a0, 0x77037d81,
0x63a440f2, 0xf8bce6e5, 0xe12c4247, 0x6b17d1f2 }}
};
const bn256 Gy[1] = {
{{ 0x37bf51f5, 0xcbb64068, 0x6b315ece, 0x2bce3357,
0x7c0f9e16, 0x8ee7eb4a, 0xfe1a7f9b, 0x4fe342e2 }}
};
#endif
/*
* a = -3 mod p256
*/
@@ -237,6 +225,36 @@ static const ac precomputed_2E_KG[15] = {
}
};
#if TEST
/*
* Generator of Elliptic curve over GF(p256)
*/
const bn256 *Gx = precomputed_KG[0].x;
const bn256 *Gy = precomputed_KG[0].y;
#endif
static int
get_v_k_i (const bn256 *K, int i)
{
uint32_t w0, w1, w2, w3;
if (i < 32)
{
w3 = K->word[6]; w2 = K->word[4]; w1 = K->word[2]; w0 = K->word[0];
}
else
{
w3 = K->word[7]; w2 = K->word[5]; w1 = K->word[3]; w0 = K->word[1];
i -= 32;
}
w3 >>= i; w2 >>= i; w1 >>= i; w0 >>= i;
return ((w3 & 1) << 3) | ((w2 & 1) << 2) | ((w1 & 1) << 1) | (w0 & 1);
}
/**
* @brief X = k * G
*
@@ -246,33 +264,47 @@ static const ac precomputed_2E_KG[15] = {
* Return 0 on success.
*/
int
compute_kG (ac *X, const bn256 *K)
compute_kG (ac *X, const bn256 *orig_K)
{
uint8_t ki_si[64]; /* Lower 4-bit for ki which is v_k_i -1, msb is
for si (encoded as: 0 means 1, 1 means -1). */
bn256 K[1];
jpc Q[1], tmp[1], *dst;
int i;
jpc Q[1];
int v_k_i_prev;
uint32_t k_is_even = bn256_is_even (orig_K);
bn256_sub_uint (K, orig_K, k_is_even);
/* It keeps the condition: 1 <= K <= N - 2, and K is odd. */
/* Fill ki_si. */
v_k_i_prev = get_v_k_i (K, 0);
ki_si[0] = v_k_i_prev - 1;
for (i = 1; i < 64; i++)
{
int v_k_i, is_zero;
v_k_i = get_v_k_i (K, i);
is_zero = (v_k_i == 0);
ki_si[i-1] = (v_k_i_prev - 1) | (is_zero << 7);
v_k_i_prev = (is_zero ? v_k_i_prev : v_k_i);
}
ki_si[63] = v_k_i_prev - 1;
memset (Q->z, 0, sizeof (bn256)); /* infinity */
for (i = 31; i >= 0; i--)
{
int k_i, k_i_e;
jpc_double (Q, Q);
k_i = (((K->word[6] >> i) & 1) << 3)
| (((K->word[4] >> i) & 1) << 2)
| (((K->word[2] >> i) & 1) << 1)
| ((K->word[0] >> i) & 1);
k_i_e = (((K->word[7] >> i) & 1) << 3)
| (((K->word[5] >> i) & 1) << 2)
| (((K->word[3] >> i) & 1) << 1)
| ((K->word[1] >> i) & 1);
if (k_i)
jpc_add_ac (Q, Q, &precomputed_KG[k_i - 1]);
if (k_i_e)
jpc_add_ac (Q, Q, &precomputed_2E_KG[k_i_e - 1]);
jpc_add_ac_signed (Q, Q, &precomputed_KG[ki_si[i]&0x0f],
ki_si[i] >> 7);
jpc_add_ac_signed (Q, Q, &precomputed_2E_KG[ki_si[i+32]&0x0f],
ki_si[i+32] >> 7);
}
dst = k_is_even ? Q : tmp;
jpc_add_ac (dst, Q, &precomputed_KG[0]);
return jpc_to_ac (X, Q);
}