Fix the implementation for NIST P-256 and secp256k1

This commit is contained in:
NIIBE Yutaka
2016-02-08 11:24:55 +09:00
parent db23a1d051
commit baf09ecac9
3 changed files with 62 additions and 27 deletions

View File

@@ -1,3 +1,11 @@
2016-02-08 Niibe Yutaka <gniibe@fsij.org>
* src/modp256r1.c (modp256r1_add, modp256r1_sub): Keep the result
less than P256R1.
(modp256r1_reduce): Fix wrong calculation.
* src/modp256k1.c (modp256k1_add, modp256k1_sub): Likewise.
Thanks to Aidan Thornton.
2016-02-05 Niibe Yutaka <gniibe@fsij.org>
* src/configure: Add submodule check suggested by Elliott

View File

@@ -1,7 +1,7 @@
/*
* modp256k1.c -- modulo arithmetic for p256k1
*
* Copyright (C) 2014 Free Software Initiative of Japan
* Copyright (C) 2014, 2016 Free Software Initiative of Japan
* Author: NIIBE Yutaka <gniibe@fsij.org>
*
* This file is a part of Gnuk, a GnuPG USB Token implementation.
@@ -55,12 +55,12 @@ const bn256 p256k1 = { {0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff,
/*
* Implementation Note.
*
* It's not always modulo p256k1. The representation is redundant
* during computation. For example, when we add the prime - 1 and 1,
* it won't overflow to 2^256, and the result is represented within
* 256-bit.
* It's always modulo p256k1.
*
* Once, I tried redundant representation which caused wrong
* calculation. Implementation could be correct with redundant
* representation, but it found that it's more expensive.
*
* It is guaranteed that modp256k1_reduce reduces to modulo p256k1.
*/
/**
@@ -69,14 +69,16 @@ const bn256 p256k1 = { {0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff,
void
modp256k1_add (bn256 *X, const bn256 *A, const bn256 *B)
{
uint32_t carry;
uint32_t cond;
bn256 tmp[1];
carry = bn256_add (X, A, B);
if (carry)
bn256_sub (X, X, P256K1);
cond = (bn256_add (X, A, B) == 0);
cond &= bn256_sub (tmp, X, P256K1);
if (cond)
/* No-carry AND borrow */
memcpy (tmp, tmp, sizeof (bn256));
else
bn256_sub (tmp, X, P256K1);
memcpy (X, tmp, sizeof (bn256));
}
/**
@@ -89,10 +91,11 @@ modp256k1_sub (bn256 *X, const bn256 *A, const bn256 *B)
bn256 tmp[1];
borrow = bn256_sub (X, A, B);
bn256_add (tmp, X, P256K1);
if (borrow)
bn256_add (X, X, P256K1);
memcpy (X, tmp, sizeof (bn256));
else
bn256_add (tmp, X, P256K1);
memcpy (tmp, tmp, sizeof (bn256));
}
/**

View File

@@ -1,7 +1,8 @@
/*
* modp256r1.c -- modulo arithmetic for p256r1
*
* Copyright (C) 2011, 2013, 2014 Free Software Initiative of Japan
* Copyright (C) 2011, 2013, 2014, 2016
* Free Software Initiative of Japan
* Author: NIIBE Yutaka <gniibe@fsij.org>
*
* This file is a part of Gnuk, a GnuPG USB Token implementation.
@@ -49,12 +50,12 @@ const bn256 p256r1 = { {0xffffffff, 0xffffffff, 0xffffffff, 0x00000000,
/*
* Implementation Note.
*
* It's not always modulo p256r1. The representation is redundant
* during computation. For example, when we add the prime - 1 and 1,
* it won't overflow to 2^256, and the result is represented within
* 256-bit.
* It's always modulo p256r1.
*
* Once, I tried redundant representation which caused wrong
* calculation. Implementation could be correct with redundant
* representation, but it found that it's more expensive.
*
* It is guaranteed that modp256r1_reduce reduces to modulo p256r1.
*/
/**
@@ -63,14 +64,16 @@ const bn256 p256r1 = { {0xffffffff, 0xffffffff, 0xffffffff, 0x00000000,
void
modp256r1_add (bn256 *X, const bn256 *A, const bn256 *B)
{
uint32_t carry;
uint32_t cond;
bn256 tmp[1];
carry = bn256_add (X, A, B);
if (carry)
bn256_sub (X, X, P256R1);
cond = (bn256_add (X, A, B) == 0);
cond &= bn256_sub (tmp, X, P256R1);
if (cond)
/* No-carry AND borrow */
memcpy (tmp, tmp, sizeof (bn256));
else
bn256_sub (tmp, X, P256R1);
memcpy (X, tmp, sizeof (bn256));
}
/**
@@ -83,10 +86,11 @@ modp256r1_sub (bn256 *X, const bn256 *A, const bn256 *B)
bn256 tmp[1];
borrow = bn256_sub (X, A, B);
bn256_add (tmp, X, P256R1);
if (borrow)
bn256_add (X, X, P256R1);
memcpy (X, tmp, sizeof (bn256));
else
bn256_add (tmp, X, P256R1);
memcpy (tmp, tmp, sizeof (bn256));
}
/**
@@ -95,7 +99,7 @@ modp256r1_sub (bn256 *X, const bn256 *A, const bn256 *B)
void
modp256r1_reduce (bn256 *X, const bn512 *A)
{
bn256 tmp[1];
bn256 tmp[1], tmp0[1];
uint32_t borrow;
#define S1 X
@@ -116,6 +120,11 @@ modp256r1_reduce (bn256 *X, const bn512 *A)
S1->word[2] = A->word[2];
S1->word[1] = A->word[1];
S1->word[0] = A->word[0];
borrow = bn256_sub (tmp0, S1, P256R1);
if (borrow)
memcpy (tmp0, tmp0, sizeof (bn256));
else
memcpy (S1, tmp0, sizeof (bn256));
/* X = S1 */
S2->word[7] = A->word[15];
@@ -155,6 +164,11 @@ modp256r1_reduce (bn256 *X, const bn512 *A)
S5->word[2] = A->word[11];
S5->word[1] = A->word[10];
S5->word[0] = A->word[9];
borrow = bn256_sub (tmp0, S5, P256R1);
if (borrow)
memcpy (tmp0, tmp0, sizeof (bn256));
else
memcpy (S5, tmp0, sizeof (bn256));
/* X += S5 */
modp256r1_add (X, X, S5);
@@ -164,6 +178,11 @@ modp256r1_reduce (bn256 *X, const bn512 *A)
S6->word[2] = A->word[13];
S6->word[1] = A->word[12];
S6->word[0] = A->word[11];
borrow = bn256_sub (tmp0, S6, P256R1);
if (borrow)
memcpy (tmp0, tmp0, sizeof (bn256));
else
memcpy (S6, tmp0, sizeof (bn256));
/* X -= S6 */
modp256r1_sub (X, X, S6);
@@ -174,6 +193,11 @@ modp256r1_reduce (bn256 *X, const bn512 *A)
S7->word[2] = A->word[14];
S7->word[1] = A->word[13];
S7->word[0] = A->word[12];
borrow = bn256_sub (tmp0, S7, P256R1);
if (borrow)
memcpy (tmp0, tmp0, sizeof (bn256));
else
memcpy (S7, tmp0, sizeof (bn256));
/* X -= S7 */
modp256r1_sub (X, X, S7);