Update for STM32F103

This commit is contained in:
NIIBE Yutaka
2016-05-30 15:13:55 +09:00
parent fae4c58d99
commit a933eebfd5
3 changed files with 536 additions and 0 deletions

View File

@@ -1,5 +1,8 @@
2016-05-30 NIIBE Yutaka <gniibe@fsij.org> 2016-05-30 NIIBE Yutaka <gniibe@fsij.org>
* mcu/adc-stm32f103.c: New from NeuG.
* mcu/stm32f103.h: New from NeuG.
* example-cdc: Update. * example-cdc: Update.
2016-05-30 NIIBE Yutaka <gniibe@fsij.org> 2016-05-30 NIIBE Yutaka <gniibe@fsij.org>

329
mcu/adc-stm32f103.c Normal file
View File

@@ -0,0 +1,329 @@
/*
* adc_stm32f103.c - ADC driver for STM32F103
* In this ADC driver, there are NeuG specific parts.
* You need to modify to use this as generic ADC driver.
*
* Copyright (C) 2011, 2012, 2013, 2015, 2016
* Free Software Initiative of Japan
* Author: NIIBE Yutaka <gniibe@fsij.org>
*
* This file is a part of NeuG, a True Random Number Generator
* implementation based on quantization error of ADC (for STM32F103).
*
* NeuG is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NeuG is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <chopstx.h>
#include <mcu/stm32f103.h>
#include "adc.h"
#define STM32_ADC_ADC1_DMA_PRIORITY 2
#define ADC_SMPR1_SMP_VREF(n) ((n) << 21)
#define ADC_SMPR1_SMP_SENSOR(n) ((n) << 18)
#define ADC_SMPR1_SMP_AN10(n) ((n) << 0)
#define ADC_SMPR1_SMP_AN11(n) ((n) << 3)
#define ADC_SMPR2_SMP_AN0(n) ((n) << 0)
#define ADC_SMPR2_SMP_AN1(n) ((n) << 3)
#define ADC_SMPR2_SMP_AN2(n) ((n) << 6)
#define ADC_SMPR2_SMP_AN9(n) ((n) << 27)
#define ADC_SQR1_NUM_CH(n) (((n) - 1) << 20)
#define ADC_SQR3_SQ1_N(n) ((n) << 0)
#define ADC_SQR3_SQ2_N(n) ((n) << 5)
#define ADC_SQR3_SQ3_N(n) ((n) << 10)
#define ADC_SQR3_SQ4_N(n) ((n) << 15)
#define ADC_SAMPLE_1P5 0
#define ADC_CHANNEL_IN0 0
#define ADC_CHANNEL_IN1 1
#define ADC_CHANNEL_IN2 2
#define ADC_CHANNEL_IN9 9
#define ADC_CHANNEL_IN10 10
#define ADC_CHANNEL_IN11 11
#define ADC_CHANNEL_SENSOR 16
#define ADC_CHANNEL_VREFINT 17
#define DELIBARATELY_DO_IT_WRONG_VREF_SAMPLE_TIME
#define DELIBARATELY_DO_IT_WRONG_START_STOP
#ifdef DELIBARATELY_DO_IT_WRONG_VREF_SAMPLE_TIME
#define ADC_SAMPLE_VREF ADC_SAMPLE_1P5
#define ADC_SAMPLE_SENSOR ADC_SAMPLE_1P5
#else
#define ADC_SAMPLE_VREF ADC_SAMPLE_239P5
#define ADC_SAMPLE_SENSOR ADC_SAMPLE_239P5
#endif
#define NEUG_DMA_CHANNEL STM32_DMA1_STREAM1
#define NEUG_DMA_MODE \
( STM32_DMA_CR_PL (STM32_ADC_ADC1_DMA_PRIORITY) \
| STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_PSIZE_WORD \
| STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE \
| STM32_DMA_CR_TEIE )
#define NEUG_ADC_SETTING1_SMPR1 ADC_SMPR1_SMP_VREF(ADC_SAMPLE_VREF) \
| ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_SENSOR)
#define NEUG_ADC_SETTING1_SMPR2 0
#define NEUG_ADC_SETTING1_SQR3 ADC_SQR3_SQ1_N(ADC_CHANNEL_VREFINT) \
| ADC_SQR3_SQ2_N(ADC_CHANNEL_SENSOR) \
| ADC_SQR3_SQ3_N(ADC_CHANNEL_SENSOR) \
| ADC_SQR3_SQ4_N(ADC_CHANNEL_VREFINT)
#define NEUG_ADC_SETTING1_NUM_CHANNELS 4
/*
* ADC finish interrupt
*/
#define INTR_REQ_DMA1_Channel1 11
static chopstx_intr_t adc_intr;
/*
* Do calibration for both of ADCs.
*/
int
adc_init (void)
{
RCC->APB2ENR |= (RCC_APB2ENR_ADC1EN | RCC_APB2ENR_ADC2EN);
RCC->APB2RSTR = (RCC_APB2RSTR_ADC1RST | RCC_APB2RSTR_ADC2RST);
RCC->APB2RSTR = 0;
ADC1->CR1 = 0;
ADC1->CR2 = ADC_CR2_ADON;
ADC1->CR2 = ADC_CR2_ADON | ADC_CR2_RSTCAL;
while ((ADC1->CR2 & ADC_CR2_RSTCAL) != 0)
;
ADC1->CR2 = ADC_CR2_ADON | ADC_CR2_CAL;
while ((ADC1->CR2 & ADC_CR2_CAL) != 0)
;
ADC1->CR2 = 0;
ADC2->CR1 = 0;
ADC2->CR2 = ADC_CR2_ADON;
ADC2->CR2 = ADC_CR2_ADON | ADC_CR2_RSTCAL;
while ((ADC2->CR2 & ADC_CR2_RSTCAL) != 0)
;
ADC2->CR2 = ADC_CR2_ADON | ADC_CR2_CAL;
while ((ADC2->CR2 & ADC_CR2_CAL) != 0)
;
ADC2->CR2 = 0;
RCC->APB2ENR &= ~(RCC_APB2ENR_ADC1EN | RCC_APB2ENR_ADC2EN);
chopstx_claim_irq (&adc_intr, INTR_REQ_DMA1_Channel1);
return 0;
}
#include "board.h"
#include "mcu/sys-stm32f103.h"
#if defined(HAVE_SYS_H)
# define SYS_BOARD_ID sys_board_id
#else
# define SYS_BOARD_ID BOARD_ID
#endif
static void
get_adc_config (uint32_t config[4])
{
config[2] = ADC_SQR1_NUM_CH(2);
switch (SYS_BOARD_ID)
{
case BOARD_ID_FST_01:
config[0] = 0;
config[1] = ADC_SMPR2_SMP_AN0(ADC_SAMPLE_1P5)
| ADC_SMPR2_SMP_AN9(ADC_SAMPLE_1P5);
config[3] = ADC_SQR3_SQ1_N(ADC_CHANNEL_IN0)
| ADC_SQR3_SQ2_N(ADC_CHANNEL_IN9);
break;
case BOARD_ID_OLIMEX_STM32_H103:
case BOARD_ID_STBEE:
config[0] = ADC_SMPR1_SMP_AN10(ADC_SAMPLE_1P5)
| ADC_SMPR1_SMP_AN11(ADC_SAMPLE_1P5);
config[1] = 0;
config[3] = ADC_SQR3_SQ1_N(ADC_CHANNEL_IN10)
| ADC_SQR3_SQ2_N(ADC_CHANNEL_IN11);
break;
case BOARD_ID_STBEE_MINI:
config[0] = 0;
config[1] = ADC_SMPR2_SMP_AN1(ADC_SAMPLE_1P5)
| ADC_SMPR2_SMP_AN2(ADC_SAMPLE_1P5);
config[3] = ADC_SQR3_SQ1_N(ADC_CHANNEL_IN1)
| ADC_SQR3_SQ2_N(ADC_CHANNEL_IN2);
break;
case BOARD_ID_CQ_STARM:
case BOARD_ID_FST_01_00:
case BOARD_ID_MAPLE_MINI:
case BOARD_ID_STM32_PRIMER2:
case BOARD_ID_STM8S_DISCOVERY:
case BOARD_ID_ST_DONGLE:
case BOARD_ID_ST_NUCLEO_F103:
case BOARD_ID_NITROKEY_START:
default:
config[0] = 0;
config[1] = ADC_SMPR2_SMP_AN0(ADC_SAMPLE_1P5)
| ADC_SMPR2_SMP_AN1(ADC_SAMPLE_1P5);
config[3] = ADC_SQR3_SQ1_N(ADC_CHANNEL_IN0)
| ADC_SQR3_SQ2_N(ADC_CHANNEL_IN1);
break;
}
}
void
adc_start (void)
{
uint32_t config[4];
get_adc_config (config);
/* Use DMA channel 1. */
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
DMA1_Channel1->CCR = STM32_DMA_CCR_RESET_VALUE;
DMA1->IFCR = 0xffffffff;
RCC->APB2ENR |= (RCC_APB2ENR_ADC1EN | RCC_APB2ENR_ADC2EN);
ADC1->CR1 = (ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_1 | ADC_CR1_DUALMOD_0
| ADC_CR1_SCAN);
ADC1->CR2 = (ADC_CR2_TSVREFE | ADC_CR2_EXTTRIG | ADC_CR2_SWSTART
| ADC_CR2_EXTSEL | ADC_CR2_DMA | ADC_CR2_CONT | ADC_CR2_ADON);
ADC1->SMPR1 = NEUG_ADC_SETTING1_SMPR1;
ADC1->SMPR2 = NEUG_ADC_SETTING1_SMPR2;
ADC1->SQR1 = ADC_SQR1_NUM_CH(NEUG_ADC_SETTING1_NUM_CHANNELS);
ADC1->SQR2 = 0;
ADC1->SQR3 = NEUG_ADC_SETTING1_SQR3;
ADC2->CR1 = (ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_1 | ADC_CR1_DUALMOD_0
| ADC_CR1_SCAN);
ADC2->CR2 = ADC_CR2_EXTTRIG | ADC_CR2_CONT | ADC_CR2_ADON;
ADC2->SMPR1 = config[0];
ADC2->SMPR2 = config[1];
ADC2->SQR1 = config[2];
ADC2->SQR2 = 0;
ADC2->SQR3 = config[3];
#ifdef DELIBARATELY_DO_IT_WRONG_START_STOP
/*
* We could just let ADC run continuously always and only enable DMA
* to receive stable data from ADC. But our purpose is not to get
* correct data but noise. In fact, we can get more noise when we
* start/stop ADC each time.
*/
ADC2->CR2 = 0;
ADC1->CR2 = 0;
#else
/* Start conversion. */
ADC2->CR2 = ADC_CR2_EXTTRIG | ADC_CR2_CONT | ADC_CR2_ADON;
ADC1->CR2 = (ADC_CR2_TSVREFE | ADC_CR2_EXTTRIG | ADC_CR2_SWSTART
| ADC_CR2_EXTSEL | ADC_CR2_DMA | ADC_CR2_CONT | ADC_CR2_ADON);
#endif
}
uint32_t adc_buf[64];
void
adc_start_conversion (int offset, int count)
{
DMA1_Channel1->CPAR = (uint32_t)&ADC1->DR; /* SetPeripheral */
DMA1_Channel1->CMAR = (uint32_t)&adc_buf[offset]; /* SetMemory0 */
DMA1_Channel1->CNDTR = count; /* Counter */
DMA1_Channel1->CCR = NEUG_DMA_MODE | DMA_CCR1_EN; /* Mode */
#ifdef DELIBARATELY_DO_IT_WRONG_START_STOP
/* Power on */
ADC2->CR2 = ADC_CR2_EXTTRIG | ADC_CR2_CONT | ADC_CR2_ADON;
ADC1->CR2 = (ADC_CR2_TSVREFE | ADC_CR2_EXTTRIG | ADC_CR2_SWSTART
| ADC_CR2_EXTSEL | ADC_CR2_DMA | ADC_CR2_CONT | ADC_CR2_ADON);
/*
* Start conversion. tSTAB is 1uS, but we don't follow the spec, to
* get more noise.
*/
ADC2->CR2 = ADC_CR2_EXTTRIG | ADC_CR2_CONT | ADC_CR2_ADON;
ADC1->CR2 = (ADC_CR2_TSVREFE | ADC_CR2_EXTTRIG | ADC_CR2_SWSTART
| ADC_CR2_EXTSEL | ADC_CR2_DMA | ADC_CR2_CONT | ADC_CR2_ADON);
#endif
}
static void adc_stop_conversion (void)
{
DMA1_Channel1->CCR &= ~DMA_CCR1_EN;
#ifdef DELIBARATELY_DO_IT_WRONG_START_STOP
ADC2->CR2 = 0;
ADC1->CR2 = 0;
#endif
}
void
adc_stop (void)
{
ADC1->CR1 = 0;
ADC1->CR2 = 0;
ADC2->CR1 = 0;
ADC2->CR2 = 0;
RCC->AHBENR &= ~RCC_AHBENR_DMA1EN;
RCC->APB2ENR &= ~(RCC_APB2ENR_ADC1EN | RCC_APB2ENR_ADC2EN);
}
static uint32_t adc_err;
/*
* Return 0 on success.
* Return 1 on error.
*/
int
adc_wait_completion (void)
{
uint32_t flags;
while (1)
{
chopstx_poll (NULL, 1, &adc_intr);
flags = DMA1->ISR & STM32_DMA_ISR_MASK; /* Channel 1 interrupt cause. */
/*
* Clear interrupt cause of channel 1.
*
* Note that CGIFx=0, as CGIFx=1 clears all of GIF, HTIF, TCIF
* and TEIF.
*/
DMA1->IFCR = (flags & ~1);
if ((flags & STM32_DMA_ISR_TEIF) != 0) /* DMA errors */
{
/* Should never happened. If any, it's coding error. */
/* Access an unmapped address space or alignment violation. */
adc_err++;
adc_stop_conversion ();
return 1;
}
else if ((flags & STM32_DMA_ISR_TCIF) != 0) /* Transfer complete */
{
adc_stop_conversion ();
return 0;
}
}
}

204
mcu/stm32f103.h Normal file
View File

@@ -0,0 +1,204 @@
#define PERIPH_BASE 0x40000000
#define APB2PERIPH_BASE (PERIPH_BASE + 0x10000)
#define AHBPERIPH_BASE (PERIPH_BASE + 0x20000)
#define RCC_APB2RSTR_ADC1RST 0x00000200
#define RCC_APB2RSTR_ADC2RST 0x00000400
struct RCC {
volatile uint32_t CR;
volatile uint32_t CFGR;
volatile uint32_t CIR;
volatile uint32_t APB2RSTR;
volatile uint32_t APB1RSTR;
volatile uint32_t AHBENR;
volatile uint32_t APB2ENR;
volatile uint32_t APB1ENR;
volatile uint32_t BDCR;
volatile uint32_t CSR;
};
#define RCC_BASE (AHBPERIPH_BASE + 0x1000)
static struct RCC *const RCC = ((struct RCC *const)RCC_BASE);
#define RCC_AHBENR_DMA1EN 0x00000001
#define RCC_AHBENR_CRCEN 0x00000040
#define RCC_APB2ENR_ADC1EN 0x00000200
#define RCC_APB2ENR_ADC2EN 0x00000400
#define CRC_CR_RESET 0x00000001
struct CRC {
volatile uint32_t DR;
volatile uint8_t IDR;
uint8_t RESERVED0;
uint16_t RESERVED1;
volatile uint32_t CR;
};
#define CRC_BASE (AHBPERIPH_BASE + 0x3000)
static struct CRC *const CRC = ((struct CRC *const)CRC_BASE);
struct ADC {
volatile uint32_t SR;
volatile uint32_t CR1;
volatile uint32_t CR2;
volatile uint32_t SMPR1;
volatile uint32_t SMPR2;
volatile uint32_t JOFR1;
volatile uint32_t JOFR2;
volatile uint32_t JOFR3;
volatile uint32_t JOFR4;
volatile uint32_t HTR;
volatile uint32_t LTR;
volatile uint32_t SQR1;
volatile uint32_t SQR2;
volatile uint32_t SQR3;
volatile uint32_t JSQR;
volatile uint32_t JDR1;
volatile uint32_t JDR2;
volatile uint32_t JDR3;
volatile uint32_t JDR4;
volatile uint32_t DR;
};
#define ADC1_BASE (APB2PERIPH_BASE + 0x2400)
#define ADC2_BASE (APB2PERIPH_BASE + 0x2800)
static struct ADC *const ADC1 = (struct ADC *const)ADC1_BASE;
static struct ADC *const ADC2 = (struct ADC *const)ADC2_BASE;
#define ADC_CR1_DUALMOD_0 0x00010000
#define ADC_CR1_DUALMOD_1 0x00020000
#define ADC_CR1_DUALMOD_2 0x00040000
#define ADC_CR1_DUALMOD_3 0x00080000
#define ADC_CR1_SCAN 0x00000100
#define ADC_CR2_ADON 0x00000001
#define ADC_CR2_CONT 0x00000002
#define ADC_CR2_CAL 0x00000004
#define ADC_CR2_RSTCAL 0x00000008
#define ADC_CR2_DMA 0x00000100
#define ADC_CR2_ALIGN 0x00000800
#define ADC_CR2_EXTSEL 0x000E0000
#define ADC_CR2_EXTSEL_0 0x00020000
#define ADC_CR2_EXTSEL_1 0x00040000
#define ADC_CR2_EXTSEL_2 0x00080000
#define ADC_CR2_EXTTRIG 0x00100000
#define ADC_CR2_SWSTART 0x00400000
#define ADC_CR2_TSVREFE 0x00800000
struct DMA_Channel {
volatile uint32_t CCR;
volatile uint32_t CNDTR;
volatile uint32_t CPAR;
volatile uint32_t CMAR;
};
struct DMA {
volatile uint32_t ISR;
volatile uint32_t IFCR;
};
#define STM32_DMA_CR_MINC DMA_CCR1_MINC
#define STM32_DMA_CR_MSIZE_WORD DMA_CCR1_MSIZE_1
#define STM32_DMA_CR_PSIZE_WORD DMA_CCR1_PSIZE_1
#define STM32_DMA_CR_TCIE DMA_CCR1_TCIE
#define STM32_DMA_CR_TEIE DMA_CCR1_TEIE
#define STM32_DMA_CR_HTIE DMA_CCR1_HTIE
#define STM32_DMA_ISR_TEIF DMA_ISR_TEIF1
#define STM32_DMA_ISR_HTIF DMA_ISR_HTIF1
#define STM32_DMA_ISR_TCIF DMA_ISR_TCIF1
#define STM32_DMA_ISR_MASK 0x0F
#define STM32_DMA_CCR_RESET_VALUE 0x00000000
#define STM32_DMA_CR_PL_MASK DMA_CCR1_PL
#define STM32_DMA_CR_PL(n) ((n) << 12)
#define DMA_CCR1_EN 0x00000001
#define DMA_CCR1_TCIE 0x00000002
#define DMA_CCR1_HTIE 0x00000004
#define DMA_CCR1_TEIE 0x00000008
#define DMA_CCR1_DIR 0x00000010
#define DMA_CCR1_CIRC 0x00000020
#define DMA_CCR1_PINC 0x00000040
#define DMA_CCR1_MINC 0x00000080
#define DMA_CCR1_PSIZE 0x00000300
#define DMA_CCR1_PSIZE_0 0x00000100
#define DMA_CCR1_PSIZE_1 0x00000200
#define DMA_CCR1_MSIZE 0x00000C00
#define DMA_CCR1_MSIZE_0 0x00000400
#define DMA_CCR1_MSIZE_1 0x00000800
#define DMA_CCR1_PL 0x00003000
#define DMA_CCR1_PL_0 0x00001000
#define DMA_CCR1_PL_1 0x00002000
#define DMA_CCR1_MEM2MEM 0x00004000
#define DMA_ISR_GIF1 0x00000001
#define DMA_ISR_TCIF1 0x00000002
#define DMA_ISR_HTIF1 0x00000004
#define DMA_ISR_TEIF1 0x00000008
#define DMA_ISR_GIF2 0x00000010
#define DMA_ISR_TCIF2 0x00000020
#define DMA_ISR_HTIF2 0x00000040
#define DMA_ISR_TEIF2 0x00000080
#define DMA_ISR_GIF3 0x00000100
#define DMA_ISR_TCIF3 0x00000200
#define DMA_ISR_HTIF3 0x00000400
#define DMA_ISR_TEIF3 0x00000800
#define DMA_ISR_GIF4 0x00001000
#define DMA_ISR_TCIF4 0x00002000
#define DMA_ISR_HTIF4 0x00004000
#define DMA_ISR_TEIF4 0x00008000
#define DMA_ISR_GIF5 0x00010000
#define DMA_ISR_TCIF5 0x00020000
#define DMA_ISR_HTIF5 0x00040000
#define DMA_ISR_TEIF5 0x00080000
#define DMA_ISR_GIF6 0x00100000
#define DMA_ISR_TCIF6 0x00200000
#define DMA_ISR_HTIF6 0x00400000
#define DMA_ISR_TEIF6 0x00800000
#define DMA_ISR_GIF7 0x01000000
#define DMA_ISR_TCIF7 0x02000000
#define DMA_ISR_HTIF7 0x04000000
#define DMA_ISR_TEIF7 0x08000000
#define DMA1_BASE (AHBPERIPH_BASE + 0x0000)
static struct DMA *const DMA1 = (struct DMA *const)DMA1_BASE;
#define DMA1_Channel1_BASE (AHBPERIPH_BASE + 0x0008)
static struct DMA_Channel *const DMA1_Channel1 =
(struct DMA_Channel *const)DMA1_Channel1_BASE;
/* System Control Block */
struct SCB
{
volatile uint32_t CPUID;
volatile uint32_t ICSR;
volatile uint32_t VTOR;
volatile uint32_t AIRCR;
volatile uint32_t SCR;
volatile uint32_t CCR;
volatile uint8_t SHP[12];
volatile uint32_t SHCSR;
volatile uint32_t CFSR;
volatile uint32_t HFSR;
volatile uint32_t DFSR;
volatile uint32_t MMFAR;
volatile uint32_t BFAR;
volatile uint32_t AFSR;
volatile uint32_t PFR[2];
volatile uint32_t DFR;
volatile uint32_t ADR;
volatile uint32_t MMFR[4];
volatile uint32_t ISAR[5];
uint32_t RESERVED0[5];
volatile uint32_t CPACR;
};
#define SCS_BASE 0xE000E000
#define SCB_BASE (SCS_BASE + 0x0D00)
static struct SCB *const SCB = (struct SCB *const)SCB_BASE;