Factor out USART routines.

This commit is contained in:
NIIBE Yutaka
2019-04-12 15:40:52 +09:00
parent f237314ebf
commit 7b129cd50f
3 changed files with 475 additions and 437 deletions

View File

@@ -1,5 +1,7 @@
2019-04-12 NIIBE Yutaka <gniibe@fsij.org> 2019-04-12 NIIBE Yutaka <gniibe@fsij.org>
* contrib/usart-common.c: Factor out from usart-stm32f103.c.
* entry.c [__ARM_ARCH_7EM__] (entry): Fix for Cortex-M4. * entry.c [__ARM_ARCH_7EM__] (entry): Fix for Cortex-M4.
2019-04-11 NIIBE Yutaka <gniibe@fsij.org> 2019-04-11 NIIBE Yutaka <gniibe@fsij.org>

397
contrib/usart-common.c Normal file
View File

@@ -0,0 +1,397 @@
static void *usart_main (void *arg);
/*
* Ring buffer
*/
#define MAX_RB_BUF 1024
struct rb {
uint8_t *buf;
chopstx_mutex_t m;
chopstx_cond_t data_available;
chopstx_cond_t space_available;
uint32_t head :10;
uint32_t tail :10;
uint32_t size :10;
uint32_t full : 1;
uint32_t empty : 1;
};
/* full && empty -> data is consumed fully */
/*
* Note: size = 1024 can still work, regardless of the limit of 10-bit.
*/
static void
rb_init (struct rb *rb, uint8_t *p, uint16_t size)
{
rb->buf = p;
rb->size = size;
chopstx_mutex_init (&rb->m);
chopstx_cond_init (&rb->data_available);
chopstx_cond_init (&rb->space_available);
rb->head = rb->tail = 0;
rb->full = 0;
rb->empty = 1;
}
static void
rb_add (struct rb *rb, uint8_t v)
{
rb->buf[rb->tail++] = v;
if (rb->tail == rb->size)
rb->tail = 0;
if (rb->tail == rb->head)
rb->full = 1;
else
rb->full = 0;
rb->empty = 0;
}
static uint8_t
rb_del (struct rb *rb)
{
uint32_t v = rb->buf[rb->head++];
if (rb->head == rb->size)
rb->head = 0;
if (rb->head == rb->tail)
rb->empty = 1;
rb->full = 0;
return v;
}
/*
* Application: consumer
* Hardware: generator
*/
static int
rb_ll_put (struct rb *rb, uint8_t v)
{
int r;
chopstx_mutex_lock (&rb->m);
if (rb->full && !rb->empty)
r = -1;
else
{
r = 0;
rb_add (rb, v);
chopstx_cond_signal (&rb->data_available);
}
chopstx_mutex_unlock (&rb->m);
return r;
}
/*
* Application: generator
* Hardware: consumer
*/
static int
rb_ll_get (struct rb *rb)
{
int r;
chopstx_mutex_lock (&rb->m);
if (rb->empty)
{
if (!rb->full)
rb->full = 1;
r = -1;
}
else
r = rb_del (rb);
chopstx_cond_signal (&rb->space_available);
chopstx_mutex_unlock (&rb->m);
return r;
}
static void
rb_ll_flush (struct rb *rb)
{
chopstx_mutex_lock (&rb->m);
while (!rb->empty)
rb_del (rb);
chopstx_cond_signal (&rb->space_available);
chopstx_mutex_unlock (&rb->m);
}
/*
* Application: consumer
* Hardware: generator
*/
static int
rb_read (struct rb *rb, uint8_t *buf, uint16_t buflen)
{
int i = 0;
chopstx_mutex_lock (&rb->m);
while (rb->empty)
chopstx_cond_wait (&rb->data_available, &rb->m);
while (i < buflen)
{
buf[i++] = rb_del (rb);
if (rb->empty)
break;
}
chopstx_cond_signal (&rb->space_available);
chopstx_mutex_unlock (&rb->m);
return i;
}
/*
* Application: generator
* Hardware: consumer
*/
static void
rb_write (struct rb *rb, uint8_t *buf, uint16_t buflen)
{
int i = 0;
chopstx_mutex_lock (&rb->m);
do
{
while (rb->full && !rb->empty)
chopstx_cond_wait (&rb->space_available, &rb->m);
while (i < buflen)
{
rb_add (rb, buf[i++]);
if (rb->full)
{
chopstx_cond_signal (&rb->data_available);
break;
}
}
}
while (i < buflen);
if (i)
chopstx_cond_signal (&rb->data_available);
chopstx_mutex_unlock (&rb->m);
}
static int
rb_empty_check (void *arg)
{
struct rb *rb = arg;
return rb->empty == 0;
}
/* Can be used two ways:
*
* When the ring buffer is rb_a2h:
* Hardware-side polling if data is available from application.
*
* When the ring buffer is rb_h2a:
* Application-side polling if data is available from hardware.
*/
static void
rb_get_prepare_poll (struct rb *rb, chopstx_poll_cond_t *poll_desc)
{
poll_desc->type = CHOPSTX_POLL_COND;
poll_desc->ready = 0;
poll_desc->cond = &rb->data_available;
poll_desc->mutex = &rb->m;
poll_desc->check = rb_empty_check;
poll_desc->arg = rb;
}
const struct usart_stat *
usart_stat (uint8_t dev_no)
{
if (dev_no < USART_DEVNO_START || dev_no > USART_DEVNO_END)
return NULL;
return usart_array[dev_no - USART_DEVNO_START].stat;
}
static struct USART *
get_usart_dev (uint8_t dev_no)
{
if (dev_no < USART_DEVNO_START || dev_no > USART_DEVNO_END)
return NULL;
return usart_array[dev_no - USART_DEVNO_START].USART;
}
static struct rb *
get_usart_rb_h2a (uint8_t dev_no)
{
if (dev_no < USART_DEVNO_START || dev_no > USART_DEVNO_END)
return NULL;
return usart_array[dev_no - USART_DEVNO_START].rb_h2a;
}
static struct rb *
get_usart_rb_a2h (uint8_t dev_no)
{
if (dev_no < USART_DEVNO_START || dev_no > USART_DEVNO_END)
return NULL;
return usart_array[dev_no - USART_DEVNO_START].rb_a2h;
}
static struct chx_intr *
get_usart_intr (uint8_t dev_no)
{
if (dev_no < USART_DEVNO_START || dev_no > USART_DEVNO_END)
return NULL;
return usart_array[dev_no - USART_DEVNO_START].intr;
}
void
usart_init (uint16_t prio, uintptr_t stack_addr, size_t stack_size,
int (*cb) (uint8_t dev_no, uint16_t notify_bits))
{
usart_init0 (cb);
chopstx_create (prio, stack_addr, stack_size, usart_main, NULL);
}
struct brr_setting {
uint8_t baud_spec;
uint16_t brr_value;
};
#define NUM_BAUD (int)(sizeof (brr_table) / sizeof (struct brr_setting))
static int (*ss_notify_callback) (uint8_t dev_no, uint16_t notify_bits);
static struct chx_poll_head *usart_poll[NUM_USART*2];
static void *
usart_main (void *arg)
{
int i;
(void)arg;
for (i = 0; i < NUM_USART; i++)
{
*usart_array[i].tx_ready = 1;
rb_init (usart_array[i].rb_a2h, usart_array[i].buf_a2h, BUF_A2H_SIZE);
rb_init (usart_array[i].rb_h2a, usart_array[i].buf_h2a, BUF_H2A_SIZE);
rb_get_prepare_poll (usart_array[i].rb_a2h, usart_array[i].app_write_event);
}
while (1)
{
int n = 0;
for (i = 0; i < NUM_USART; i++)
{
usart_poll[n++] = (struct chx_poll_head *)usart_array[i].intr;
if (*usart_array[i].tx_ready)
usart_poll[n++] = (struct chx_poll_head *)usart_array[i].app_write_event;
else
usart_array[i].app_write_event->ready = 0;
}
chopstx_poll (NULL, n, usart_poll);
for (i = 0; i < NUM_USART; i++)
{
int tx_done = 0;
if (usart_array[i].intr->ready)
{
tx_done = handle_intr (usart_array[i].USART,
usart_array[i].rb_h2a, usart_array[i].stat);
*usart_array[i].tx_ready |= tx_done;
chopstx_intr_done (usart_array[i].intr);
}
if (tx_done || (*usart_array[i].tx_ready
&& usart_array[i].app_write_event->ready))
*usart_array[i].tx_ready = handle_tx (usart_array[i].USART,
usart_array[i].rb_a2h, usart_array[i].stat);
}
}
return NULL;
}
int
usart_read (uint8_t dev_no, char *buf, uint16_t buflen)
{
struct rb *rb = get_usart_rb_h2a (dev_no);
if (rb == NULL)
return -1;
if (buf == NULL && buflen == 0)
{
rb_ll_flush (rb);
return 0;
}
else
return rb_read (rb, (uint8_t *)buf, buflen);
}
void
usart_read_prepare_poll (uint8_t dev_no, chopstx_poll_cond_t *poll_desc)
{
struct rb *rb = get_usart_rb_h2a (dev_no);
if (rb == NULL)
return;
rb_get_prepare_poll (rb, poll_desc);
}
int
usart_read_ext (uint8_t dev_no, char *buf, uint16_t buflen, uint32_t *timeout_p)
{
chopstx_poll_cond_t poll_desc;
struct chx_poll_head *ph[] = { (struct chx_poll_head *)&poll_desc };
int r;
struct rb *rb = get_usart_rb_h2a (dev_no);
if (rb == NULL)
return -1;
rb_get_prepare_poll (rb, &poll_desc);
r = chopstx_poll (timeout_p, 1, ph);
if (r == 0)
return 0;
else
return rb_read (rb, (uint8_t *)buf, buflen);
}
static void
usart_wait_write_completion (struct rb *rb)
{
chopstx_mutex_lock (&rb->m);
while (!(rb->empty && rb->full))
chopstx_cond_wait (&rb->space_available, &rb->m);
chopstx_mutex_unlock (&rb->m);
}
int
usart_write (uint8_t dev_no, char *buf, uint16_t buflen)
{
struct rb *rb = get_usart_rb_a2h (dev_no);
if (rb == NULL)
return -1;
if (buf == NULL && buflen == 0)
rb_ll_flush (rb);
else
{
struct USART *USARTx = get_usart_dev (dev_no);
int smartcard_mode = ((USARTx->CR3 & USART_CR3_SCEN) != 0);
if (smartcard_mode)
usart_config_recv_enable (USARTx, 0);
rb_write (rb, (uint8_t *)buf, buflen);
if (smartcard_mode)
{
usart_wait_write_completion (rb);
usart_config_recv_enable (USARTx, 1);
}
}
return 0;
}

View File

@@ -32,6 +32,7 @@
#include <mcu/stm32.h> #include <mcu/stm32.h>
#include <contrib/usart.h> #include <contrib/usart.h>
/* Hardware registers */
struct USART { struct USART {
volatile uint32_t SR; volatile uint32_t SR;
volatile uint32_t DR; volatile uint32_t DR;
@@ -44,8 +45,8 @@ struct USART {
#define USART2_BASE (APB1PERIPH_BASE + 0x4400) #define USART2_BASE (APB1PERIPH_BASE + 0x4400)
#define USART3_BASE (APB1PERIPH_BASE + 0x4800) #define USART3_BASE (APB1PERIPH_BASE + 0x4800)
static struct USART *const USART2 = (struct USART *)USART2_BASE; #define USART2 ((struct USART *)USART2_BASE)
static struct USART *const USART3 = (struct USART *)USART3_BASE; #define USART3 ((struct USART *)USART3_BASE)
#define USART_SR_CTS (1 << 9) #define USART_SR_CTS (1 << 9)
#define USART_SR_LBD (1 << 8) #define USART_SR_LBD (1 << 8)
@@ -79,24 +80,71 @@ static struct USART *const USART3 = (struct USART *)USART3_BASE;
#define USART_CR3_SCEN (1 << 5) #define USART_CR3_SCEN (1 << 5)
#define USART_CR3_NACK (1 << 4) #define USART_CR3_NACK (1 << 4)
static struct USART *
get_usart_dev (uint8_t dev_no)
{
if (dev_no == 2)
return USART2;
else if (dev_no == 3)
return USART3;
return NULL; static struct usart_stat usart2_stat;
} static struct usart_stat usart3_stat;
/* We assume 36MHz f_PCLK */ static struct chx_intr usart2_intr;
struct brr_setting { static struct chx_intr usart3_intr;
uint8_t baud_spec;
uint16_t brr_value; #define BUF_A2H_SIZE 256
#define BUF_H2A_SIZE 512
static uint8_t buf_usart2_rb_a2h[BUF_A2H_SIZE];
static uint8_t buf_usart2_rb_h2a[BUF_H2A_SIZE];
static uint8_t buf_usart3_rb_a2h[BUF_A2H_SIZE];
static uint8_t buf_usart3_rb_h2a[BUF_H2A_SIZE];
static struct rb usart2_rb_a2h;
static struct rb usart2_rb_h2a;
static struct rb usart3_rb_a2h;
static struct rb usart3_rb_h2a;
static chopstx_poll_cond_t usart2_app_write_event;
static chopstx_poll_cond_t usart3_app_write_event;
/* Global variables so that it can be easier to debug. */
static int usart2_tx_ready;
static int usart3_tx_ready;
#define INTR_REQ_USART2 38
#define INTR_REQ_USART3 39
#define USART_DEVNO_START 2
#define USART_DEVNO_END 3
struct usart {
struct USART *USART;
struct usart_stat *stat;
struct chx_intr *intr;
struct rb *rb_h2a;
struct rb *rb_a2h;
uint8_t *buf_a2h;
uint8_t *buf_h2a;
chopstx_poll_cond_t *app_write_event;
int *tx_ready;
uint8_t irq_num;
}; };
#define NUM_BAUD (int)(sizeof (brr_table) / sizeof (struct brr_setting))
static const struct usart usart_array[] =
{
{ USART2, &usart2_stat, &usart2_intr, &usart2_rb_a2h, &usart2_rb_h2a,
buf_usart2_rb_a2h, buf_usart2_rb_h2a, &usart2_app_write_event,
&usart2_tx_ready, INTR_REQ_USART2 },
{ USART3, &usart3_stat, &usart3_intr, &usart3_rb_a2h, &usart3_rb_h2a,
buf_usart3_rb_a2h, buf_usart3_rb_h2a, &usart3_app_write_event,
&usart3_tx_ready, INTR_REQ_USART3 },
};
#define NUM_USART ((int)(sizeof (usart_array) / sizeof (struct usart)))
static int handle_intr (struct USART *USARTx, struct rb *rb2a, struct usart_stat *stat);
static int handle_tx (struct USART *USARTx, struct rb *rb2h, struct usart_stat *stat);
static void usart_config_recv_enable (struct USART *USARTx, int on);
#include "usart-common.c"
/* We assume 36MHz f_PCLK */
static const struct brr_setting brr_table[] = { static const struct brr_setting brr_table[] = {
{ B600, (3750 << 4)}, { B600, (3750 << 4)},
{ B1200, (1875 << 4)}, { B1200, (1875 << 4)},
@@ -111,10 +159,6 @@ static const struct brr_setting brr_table[] = {
{ BSCARD, ( 234 << 4)|6}, { BSCARD, ( 234 << 4)|6},
}; };
static void *usart_main (void *arg);
static struct usart_stat usart2_stat;
static struct usart_stat usart3_stat;
void void
usart_config_brr (uint8_t dev_no, uint16_t brr_value) usart_config_brr (uint8_t dev_no, uint16_t brr_value)
@@ -226,257 +270,26 @@ usart_config (uint8_t dev_no, uint32_t config_bits)
return 0; return 0;
} }
static int (*ss_notify_callback) (uint8_t dev_no, uint16_t notify_bits);
#define INTR_REQ_USART2 38
#define INTR_REQ_USART3 39
static struct chx_intr usart2_intr;
static struct chx_intr usart3_intr;
void void
usart_init0 (int (*cb) (uint8_t dev_no, uint16_t notify_bits)) usart_init0 (int (*cb) (uint8_t dev_no, uint16_t notify_bits))
{ {
ss_notify_callback = cb; int i;
usart2_stat.dev_no = 2;
usart3_stat.dev_no = 3;
chopstx_claim_irq (&usart2_intr, INTR_REQ_USART2); ss_notify_callback = cb;
chopstx_claim_irq (&usart3_intr, INTR_REQ_USART3);
for (i = 0; i < NUM_USART; i++)
{
usart_array[i].stat->dev_no = i + USART_DEVNO_START;
chopstx_claim_irq (usart_array[i].intr, usart_array[i].irq_num);
}
/* Enable USART2 and USART3 clocks, and strobe reset. */ /* Enable USART2 and USART3 clocks, and strobe reset. */
RCC->APB1ENR |= ((1 << 18) | (1 << 17)); RCC->APB1ENR |= ((1 << 18) | (1 << 17));
RCC->APB1RSTR = ((1 << 18) | (1 << 17)); RCC->APB1RSTR = ((1 << 18) | (1 << 17));
RCC->APB1RSTR = 0; RCC->APB1RSTR = 0;
} }
void
usart_init (uint16_t prio, uintptr_t stack_addr, size_t stack_size,
int (*cb) (uint8_t dev_no, uint16_t notify_bits))
{
usart_init0 (cb);
chopstx_create (prio, stack_addr, stack_size, usart_main, NULL);
}
/*
* Ring buffer
*/
#define MAX_RB_BUF 1024
struct rb {
uint8_t *buf;
chopstx_mutex_t m;
chopstx_cond_t data_available;
chopstx_cond_t space_available;
uint32_t head :10;
uint32_t tail :10;
uint32_t size :10;
uint32_t full : 1;
uint32_t empty : 1;
};
/* full && empty -> data is consumed fully */
/*
* Note: size = 1024 can still work, regardless of the limit of 10-bit.
*/
static void
rb_init (struct rb *rb, uint8_t *p, uint16_t size)
{
rb->buf = p;
rb->size = size;
chopstx_mutex_init (&rb->m);
chopstx_cond_init (&rb->data_available);
chopstx_cond_init (&rb->space_available);
rb->head = rb->tail = 0;
rb->full = 0;
rb->empty = 1;
}
static void
rb_add (struct rb *rb, uint8_t v)
{
rb->buf[rb->tail++] = v;
if (rb->tail == rb->size)
rb->tail = 0;
if (rb->tail == rb->head)
rb->full = 1;
else
rb->full = 0;
rb->empty = 0;
}
static uint8_t
rb_del (struct rb *rb)
{
uint32_t v = rb->buf[rb->head++];
if (rb->head == rb->size)
rb->head = 0;
if (rb->head == rb->tail)
rb->empty = 1;
rb->full = 0;
return v;
}
/*
* Application: consumer
* Hardware: generator
*/
static int
rb_ll_put (struct rb *rb, uint8_t v)
{
int r;
chopstx_mutex_lock (&rb->m);
if (rb->full && !rb->empty)
r = -1;
else
{
r = 0;
rb_add (rb, v);
chopstx_cond_signal (&rb->data_available);
}
chopstx_mutex_unlock (&rb->m);
return r;
}
/*
* Application: generator
* Hardware: consumer
*/
static int
rb_ll_get (struct rb *rb)
{
int r;
chopstx_mutex_lock (&rb->m);
if (rb->empty)
{
if (!rb->full)
rb->full = 1;
r = -1;
}
else
r = rb_del (rb);
chopstx_cond_signal (&rb->space_available);
chopstx_mutex_unlock (&rb->m);
return r;
}
static void
rb_ll_flush (struct rb *rb)
{
chopstx_mutex_lock (&rb->m);
while (!rb->empty)
rb_del (rb);
chopstx_cond_signal (&rb->space_available);
chopstx_mutex_unlock (&rb->m);
}
/*
* Application: consumer
* Hardware: generator
*/
static int
rb_read (struct rb *rb, uint8_t *buf, uint16_t buflen)
{
int i = 0;
chopstx_mutex_lock (&rb->m);
while (rb->empty)
chopstx_cond_wait (&rb->data_available, &rb->m);
while (i < buflen)
{
buf[i++] = rb_del (rb);
if (rb->empty)
break;
}
chopstx_cond_signal (&rb->space_available);
chopstx_mutex_unlock (&rb->m);
return i;
}
/*
* Application: generator
* Hardware: consumer
*/
static void
rb_write (struct rb *rb, uint8_t *buf, uint16_t buflen)
{
int i = 0;
chopstx_mutex_lock (&rb->m);
do
{
while (rb->full && !rb->empty)
chopstx_cond_wait (&rb->space_available, &rb->m);
while (i < buflen)
{
rb_add (rb, buf[i++]);
if (rb->full)
{
chopstx_cond_signal (&rb->data_available);
break;
}
}
}
while (i < buflen);
if (i)
chopstx_cond_signal (&rb->data_available);
chopstx_mutex_unlock (&rb->m);
}
static int
rb_empty_check (void *arg)
{
struct rb *rb = arg;
return rb->empty == 0;
}
/* Can be used two ways:
*
* When the ring buffer is rb_a2h:
* Hardware-side polling if data is available from application.
*
* When the ring buffer is rb_h2a:
* Application-side polling if data is available from hardware.
*/
static void
rb_get_prepare_poll (struct rb *rb, chopstx_poll_cond_t *poll_desc)
{
poll_desc->type = CHOPSTX_POLL_COND;
poll_desc->ready = 0;
poll_desc->cond = &rb->data_available;
poll_desc->mutex = &rb->m;
poll_desc->check = rb_empty_check;
poll_desc->arg = rb;
}
static uint8_t buf_usart2_rb_a2h[256];
static uint8_t buf_usart2_rb_h2a[512];
static uint8_t buf_usart3_rb_a2h[256];
static uint8_t buf_usart3_rb_h2a[512];
static struct rb usart2_rb_a2h;
static struct rb usart2_rb_h2a;
static struct rb usart3_rb_a2h;
static struct rb usart3_rb_h2a;
static chopstx_poll_cond_t usart2_app_write_event;
static chopstx_poll_cond_t usart3_app_write_event;
static struct chx_poll_head *usart_poll[4];
/* Global variables so that it can be easier to debug. */
static int usart2_tx_ready;
static int usart3_tx_ready;
#define UART_STATE_BITMAP_RX_CARRIER (1 << 0) #define UART_STATE_BITMAP_RX_CARRIER (1 << 0)
#define UART_STATE_BITMAP_TX_CARRIER (1 << 1) #define UART_STATE_BITMAP_TX_CARRIER (1 << 1)
#define UART_STATE_BITMAP_BREAK (1 << 2) #define UART_STATE_BITMAP_BREAK (1 << 2)
@@ -600,179 +413,6 @@ handle_tx (struct USART *USARTx, struct rb *rb2h, struct usart_stat *stat)
return tx_ready; return tx_ready;
} }
static void *
usart_main (void *arg)
{
(void)arg;
usart2_tx_ready = 1;
usart3_tx_ready = 1;
rb_init (&usart2_rb_a2h, buf_usart2_rb_a2h, sizeof buf_usart2_rb_a2h);
rb_init (&usart2_rb_h2a, buf_usart2_rb_h2a, sizeof buf_usart2_rb_h2a);
rb_init (&usart3_rb_a2h, buf_usart3_rb_a2h, sizeof buf_usart3_rb_a2h);
rb_init (&usart3_rb_h2a, buf_usart3_rb_h2a, sizeof buf_usart3_rb_h2a);
rb_get_prepare_poll (&usart2_rb_a2h, &usart2_app_write_event);
rb_get_prepare_poll (&usart3_rb_a2h, &usart3_app_write_event);
while (1)
{
int n = 0;
int usart2_tx_done = 0;
int usart3_tx_done = 0;
usart_poll[n++] = (struct chx_poll_head *)&usart2_intr;
usart_poll[n++] = (struct chx_poll_head *)&usart3_intr;
if (usart2_tx_ready)
usart_poll[n++] = (struct chx_poll_head *)&usart2_app_write_event;
else
usart2_app_write_event.ready = 0;
if (usart3_tx_ready)
usart_poll[n++] = (struct chx_poll_head *)&usart3_app_write_event;
else
usart3_app_write_event.ready = 0;
chopstx_poll (NULL, n, usart_poll);
if (usart2_intr.ready)
{
usart2_tx_done = handle_intr (USART2, &usart2_rb_h2a, &usart2_stat);
usart2_tx_ready |= usart2_tx_done;
chopstx_intr_done (&usart2_intr);
}
if (usart3_intr.ready)
{
usart3_tx_done = handle_intr (USART3, &usart3_rb_h2a, &usart3_stat);
usart3_tx_ready |= usart3_tx_done;
chopstx_intr_done (&usart3_intr);
}
if (usart2_tx_done || (usart2_tx_ready && usart2_app_write_event.ready))
usart2_tx_ready = handle_tx (USART2, &usart2_rb_a2h, &usart2_stat);
if (usart3_tx_done || (usart3_tx_ready && usart3_app_write_event.ready))
usart3_tx_ready = handle_tx (USART3, &usart3_rb_a2h, &usart3_stat);
}
return NULL;
}
int
usart_read (uint8_t dev_no, char *buf, uint16_t buflen)
{
struct rb *rb;
if (dev_no == 2)
rb = &usart2_rb_h2a;
else if (dev_no == 3)
rb = &usart3_rb_h2a;
else
return -1;
if (buf == NULL && buflen == 0)
{
rb_ll_flush (rb);
return 0;
}
else
return rb_read (rb, (uint8_t *)buf, buflen);
}
void
usart_read_prepare_poll (uint8_t dev_no, chopstx_poll_cond_t *poll_desc)
{
struct rb *rb;
if (dev_no == 2)
rb = &usart2_rb_h2a;
else if (dev_no == 3)
rb = &usart3_rb_h2a;
else
return;
rb_get_prepare_poll (rb, poll_desc);
}
int
usart_read_ext (uint8_t dev_no, char *buf, uint16_t buflen, uint32_t *timeout_p)
{
struct rb *rb;
chopstx_poll_cond_t poll_desc;
struct chx_poll_head *ph[] = { (struct chx_poll_head *)&poll_desc };
int r;
if (dev_no == 2)
rb = &usart2_rb_h2a;
else if (dev_no == 3)
rb = &usart3_rb_h2a;
else
return -1;
rb_get_prepare_poll (rb, &poll_desc);
r = chopstx_poll (timeout_p, 1, ph);
if (r == 0)
return 0;
else
return rb_read (rb, (uint8_t *)buf, buflen);
}
static void
usart_wait_write_completion (struct rb *rb)
{
chopstx_mutex_lock (&rb->m);
while (!(rb->empty && rb->full))
chopstx_cond_wait (&rb->space_available, &rb->m);
chopstx_mutex_unlock (&rb->m);
}
int
usart_write (uint8_t dev_no, char *buf, uint16_t buflen)
{
struct rb *rb;
if (dev_no == 2)
rb = &usart2_rb_a2h;
else if (dev_no == 3)
rb = &usart3_rb_a2h;
else
return -1;
if (buf == NULL && buflen == 0)
rb_ll_flush (rb);
else
{
struct USART *USARTx = get_usart_dev (dev_no);
int smartcard_mode = ((USARTx->CR3 & USART_CR3_SCEN) != 0);
if (smartcard_mode)
usart_config_recv_enable (USARTx, 0);
rb_write (rb, (uint8_t *)buf, buflen);
if (smartcard_mode)
{
usart_wait_write_completion (rb);
usart_config_recv_enable (USARTx, 1);
}
}
return 0;
}
const struct usart_stat *
usart_stat (uint8_t dev_no)
{
if (dev_no == 2)
return &usart2_stat;
else if (dev_no == 3)
return &usart3_stat;
else
return NULL;
}
int int
usart_send_break (uint8_t dev_no) usart_send_break (uint8_t dev_no)
{ {
@@ -799,13 +439,12 @@ usart_block_sendrecv (uint8_t dev_no, const char *s_buf, uint16_t s_buflen,
uint32_t data; uint32_t data;
struct USART *USARTx = get_usart_dev (dev_no); struct USART *USARTx = get_usart_dev (dev_no);
int smartcard_mode = ((USARTx->CR3 & USART_CR3_SCEN) != 0); int smartcard_mode = ((USARTx->CR3 & USART_CR3_SCEN) != 0);
struct chx_intr *usartx_intr; struct chx_intr *usartx_intr = get_usart_intr (dev_no);
struct chx_poll_head *ph[1]; struct chx_poll_head *ph[1];
if (dev_no == 2) if (usartx_intr == NULL)
usartx_intr = &usart2_intr; return -1;
else
usartx_intr = &usart3_intr;
ph[0] = (struct chx_poll_head *)usartx_intr; ph[0] = (struct chx_poll_head *)usartx_intr;
p = (uint8_t *)s_buf; p = (uint8_t *)s_buf;